COMBINED DETERMINATION OF THE THERMOPHYSICAL PROPERTIES OF

VAPORIZED MATERIALS

S. I. Mantulenko and V. V. Kharitonov

Inzhenerno-Fizicheskii Zhurnal, Vol. 14, No. 5, pp. 873—876, 1968

UDC 536.22.083

A nonsteady method is proposed for determining the thermophysical
characteristics of poor heat conductors in the form of thin-film va-
porized coatings. The heat conduction problem is solved for a system
consisting of a bounded and a semibounded rod with a plane heat
source of constant power using a thin-film coating with known char-
acteristics as standard,

Steady-state methods [3, 4] of determining the ther-
mophysical characteristics of vaporized thin-film
coatings are not very suitable owing to the length of
the experiment and the impossibility of a combined
determination of all the thermophysical characteristics
in the course of single experiment over the entire
range of interest.

Most suitable for the investigation of vaporized
coatings are the nonsteady methods described in [5, 6].
However, the method described in [5] makes it possi-
ble to determine only the thermal conductivity of the
material from a single experiment, requires a know~
ledge of the specific heat of the standard and, what is
very important in investigating vaporized materials,
necessitates the double deposition of the same material
(on two sides of the standard). The method described
in [6] makes it possible to determine the thermophys-
ical characteristics in combination, but requires a
knowledge of the thermal activity of the semibounded
rods and likewise double deposition {on two rods).

Both methods require that the thicknesses of the
coatings be strictly equal.

These disadvantages prompted us to develop a new
method.

Consider a system (see the figure) consisting of
two semibounded rods 2 and 4 with thermophysical
characteristics a,, A,, ¢, and two bounded rods 1 and 3
with thermophysical characteristics ay, Ay, ¢y and as,
A3, C3, respectively. The characteristics of body 3 are
assumed known.

Starting from a certain time 1 = 0, a source of con-
gtant power g acts at the section a-a. ‘

The mathematical formulation of the problem for
bodies 1 and 2 has the form [1, 2]
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An analogous system of equations can also be written
for bodies 3 and 4. Then, in accordance with [6], we
obtain the solutions for x = Ry and x = R; in the form.
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Taking two multiple moments of time 7' and 7" such
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Having determined g8 and o experimentally from the
graphs g = f(K, @) [6], we determine K, and K;. (The
possibility of determining K; by calculation gives a
check on the accuracy of the experiment.)

From the equation
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we determine the thermal diffusivity.
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From (2),
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Solving (6) and (7) jointly, we obtain
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where q = qy + g3 is the power of the plane source.

We can obtain the distribution of heat flux between
bodies 1 and 3, if we assume that A = Rq/At (in accord-
ance with [6]); then,
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Substituting the values of q; and q; into (8) and solving
it for A4, we obtain
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If the material of the standard coating is sufficiently
close in its properties to the investigated coatings
(my ~ m,), then, taking the ratio of the temperature
drops at bodies 2 and 4 at the same moment of time,
we obtain
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Having obtained the value of ' experimentally, from
the previously calculated dependence g' = f{K;), we
find the value of K, and then q;.

When the drop at the semibounded rods 2 and 4 is
sufficiently small, solution (8) or (13) is inadmissible.
In this case, we use the solution of the starting system
of equations (1) for the temperature at the point x=0
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Then the drop at the investigated coating
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Taking the ratio of the temperature drops at multiple
time infervals and denoting it by 8", we obtain
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Since we assume that m « 1, and ierfc 2x « ierfcx,
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The latter expression can be tabulated and graphs of
B" versus K; can be plotted for various o = const.
Then, having obtained the value of 8" and « experi-
mentally, we find K, and then the thermal diffusivity a;.

The value of the coefficient A; is determined from the
solution of system (9) and (10). As a result we obtain
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NOTATION

A is the thermal conductivity, W/m +deg; a is the
thermal diffusivity, m?/sec; q is the specific heat flux,
W/m?; r is the time, sec; R is the thickness of the
coating, m; t is temperature, deg; At is the tempera-
ture drop, deg.
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